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SUMMARY

Maps depicting cancer incidence rates have become useful tools in public health research, giving
valuable information about the spatial variation in rates of disease. Typically, these maps are generated
using count data aggregated over areas such as counties or census blocks. However, with the proliferation
of geographic information systems and related databases, it is becoming easier to obtain exact spatial
locations for the cancer cases and suitable control subjects. The use of such point data allows us to adjust
for individual-level covariates, such as age and smoking status, when estimating the spatial variation
in disease risk. Unfortunately, such covariate information is often subject to missingness. We propose
a method for mapping cancer risk when covariates are not completely observed. We model these data
using a logistic generalized additive model. Estimates of the linear and non-linear effects are obtained
using a mixed effects model representation. We develop an EM algorithm to account for missing data
and the random effects. Since the expectation step involves an intractable integral, we estimate the E-step
with a Laplace approximation. This framework provides a general method for handling missing covariate
values when fitting generalized additive models. We illustrate our method through an analysis of cancer
incidence data from Cape Cod, Massachusetts. These analyses demonstrate that standard complete-case
methods can yield biased estimates of the spatial variation of cancer risk.

Keywords: Binary response; Expectation Maximization; Generalized linear model; Laplace approximation; Logistic
regression; Method of weights; Missing data.

1. INTRODUCTION

Geographical information systems are becoming widely used in environmental health and epidemiol-
ogy. Correspondingly, investigators would like to produce summary maps of their data. For example, in
the context of environmental epidemiology, we might be interested in a map of relative cancer incidence
rates or cancer risk. Many studies, however, are unable to collect complete covariate information for each
subject. These values may be either missing by design (e.g. when some data are collected on only a subset
of subjects) or missing unintentionally. In this paper we propose a method to estimate maps of covariate
adjusted relative cancer risk in the presence of incomplete covariate data.
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This work was motivated by a study of cancer incidence on Cape Cod, Massachusetts, USA. For nearly
twenty years the Massachusetts Department of Public Health (MDPH) has maintained a cancer registry
database which records incident cases for 22 types of cancers, including lung, breast, and prostate cancers.
The report summarizing these data for the period 1982–92 showed elevated standardized incidence ratios
for several types of cancer in the towns of Barnstable, Falmouth, Sandwich, Bourne, and Mashpee
(Massachusetts Department of Public Health, 1997). Collectively, these towns comprise a region known
as Upper Cape Cod. Prostate cancer in men was of particular concern since it appeared to be the most
elevated. The MDPH was interested in determining if the elevated cancer rates were due to environmental
factors, including contaminants at several sites on the Massachusetts Military Reservation (MMR) that
have been listed on the US Environmental Protection Agency’s National Priority List. These sites are of
significant interest because the MMR is situated above the sole-source aquifer for the Upper Cape.

In addition to the type of cancer, the registry maintains data on the patient’s residence and age at the
time of diagnosis, as well as gender and smoking status. The data are routinely summarized by gender at
the town level, but raw, geo-coded residence locations have been collected for this study. Assuming that
adverse environmental effects are likely to cause only certain types of cancer, this enables us to overcome
the problem of adjusting for population density which is inherent in calculating standardized incidence
ratios. Such data are available only at the census tract level which is much coarser than the cancer data.
This type of analysis also allows us to adjust for individual level covariates such as age and smoking
status.

In this paper we analyze data for incidence of prostate cancer on Upper Cape Cod. Data have been
compiled forn = 3191 men diagnosed with one of the 22 types of cancer during the period 1987–
94. While age and location data were collected for all patients, smoking status was not obtained for
approximately 29% of the men. The upper-left panel of Figure 1 displays the approximate locations of the
residences of the patients. For confidentiality reasons, the points have been jittered. The solid and empty
dots correspond to prostate cancer and other cancer cases, respectively. The lines correspond to the census
tract boundaries. We see that there are several areas with a high density of cancer cases; these correspond
to the population centers on the Upper Cape and are not necessarily associated with any sort of exposures.
By using relative cancer mapping, we assume that all cancer cases provide a reasonable surrogate for
population density across the region. Potential difficulties with relative cancer mapping are discussed in
Section 4.

Table 1 displays summary statistics for age and smoking status classified by cancer type. Age is a
categorical variable with categories defined by age decade (i.e. age= 1 for ages between 1 and 10 years,
age= 2 for 11–20 years, etc.). Smoking status has two categories: ever-smokers (smoke= 1) and never-
smokers (smoke= 0). Of the cohort of 3191 men, 998 (31.3%) were prostate cancer patients. We see that
prostate cancer patients are less likely to be smokers than are patients with other types of cancer. This is
partially explained by the relatively large number of lung cancer patients, most of which were smokers.
Wealso see that the pattern of missing data depends on cancer type. Smoking status is missing for 41.0%
of the prostate cancer patients, while 24.2% of the other cancer patients did not provide information about
smoking status. Thus, these data are clearly not missing completely-at-random in the sense of Little and
Rubin (1987).

Fitting maps of relative cancer risk, and bivariate surfaces in general, can be accomplished in a number
of ways. The most commonly used methods are kriging (e.g. Cressie, 1993) and thin plate splines (Wahba,
1990). The extension of kriging to discrete response data is not straightforward. Methods to accomplish
this, such as indicator kriging, have been developed, but are somewhat ad hoc. Diggleet al. (1998) have
recently proposed an attractive method for handling such data using Markov chain Monte Carlo methods.
We take a different approach, using generalized additive models with a mixed model representation.

Generalized additive models (e.g. Hastie and Tibshirani, 1990) provide a flexible means of handling
non-linear covariate effects. These models have gained widespread popularity in a diverse set of
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Fig. 1. Upper Cape Cod cancer data. Upper-left panel: Raw data. For confidentiality reasons, the points have been
jittered. Upper-right: Complete-case estimate of the odds ratio as a function of geography. Lower-left: Method of
weights estimate of the odds ratio as a function of geography. Lower-right: Estimates of the odds ratio for age relative
to the average age in the cohort.

Table 1.Summary statistics for age and smoking status, classified by cancer
type for the Upper Cape Cod data

Prostate cancer Other cancers
nobs mean sd nmiss (%) nobs mean sd nmiss (%)

smoke 588 0.56 0.50 410(41.0) 1663 0.75 0.44 530(24.2)
age 998 8.25 0.91 0(0.0) 2193 7.76 1.39 0(0.0)

disciplines including environmental epidemiology, environmental science, ecology, public health, political
science, and economics (e.g. Linton and Härdle, 1996; Schwartz, 1997; Beck and Jackman, 1998; Davis
and Speckman, 1999; Engelset al., 1999; Rolandet al., 2000). Recently, Kammann and Wand (2003)
showed how kriging could be incorporated into a generalized additive model, with representation as a
generalized linear mixed model. Because mixed models can be fit using maximum likelihood, this allows
us to use likelihood-based methods for estimation and handling of missing data. We develop a method for
handling missing covariate values in generalized additive models using the EM algorithm (Dempsteret
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al., 1977). For models other than the Gaussian response, the E-step involves an intractable integral. As in
Steele (1996) we use Laplace’s method (Tierneyet al., 1989) to approximate this expectation.

Section 2 introduces the generalized additive model, estimation of penalized regression splines via
a mixed effects model, and methods for estimation in generalized linear mixed effects models with
complete data. Section 3 develops an algorithm for estimation of generalized additive models in which
some covariates exhibit missingness. In Section 4, we analyze the Cape Cod cancer data. We conclude
with a brief discussion in Section 5. Additional computational details are provided in an appendix on
Biostatistics Online.

2. MAPPING CANCER RISK USING GENERALIZED ADDITIVE MODELS

Suppose first that the data are(xi , yi ), 1 � i � n, where theyi are binary andxi ∈ R
2 represents

geographical location. To assess spatial variation in data of this type, Diggleet al. (1998) propose the
kriging-type model

logit{P(yi = 1|S(xi ))} = β0 + βT
1xi + S(xi ) , (2.1)

where{S(x) : x ∈ R
2} is a stationary zero-mean stochastic process.

The right-hand side of (2.1) is the logarithm of the odds for the event{yi = 1}, givenxi , which we
denote by LO(xi ). It is often useful to map an estimate of LO(x0) over a mesh ofx0 ∈ R

2 values. This
involves the bivariate function

L̂O(x0) = β̂0 + β̂
T
1x0 + Ŝ(x0) , (2.2)

whereβ̂0 andβ̂1 are maximum likelihood estimates and

Ŝ(x0) = E{S(x0)|y}
is an ‘optimal’ predictor ofS(x0).

To make (2.2) practical we require a parsimonious model for the inter-point covariances
cov{S(x), S(x′)}, x, x′ ∈ R

2. Wepropose to use the isotropic model

cov{S(x), S(x′)} = Cθ(‖x − x′‖) , (2.3)

where‖v‖ = √
vTv andCθ is member of the Matérn family of covariance functions (see Stein, 1999).

Wewill work in the subfamily corresponding to a single value of the Matérn smoothness parameter:

Cθ(r) = σ 2
x (1 + |r |/ρ)e−|r |/ρ . (2.4)

The function given in (2.4) is the simplest member of the Matérn family that yields differentiable surface
estimate. Kammann and Wand (2003) provide further discussion of the choice of the Matérn smoothness
parameter.

To ensure scale invariance, increase numerical stability and reduce the computational burden, we
choose the range parameterρ via the simple rule

ρ̂ = max
1�i, j�n

‖xi − x j‖. (2.5)

Fixing ρ a priori allows the use of the generalized linear model for fitting. In our experience, the
smoothness of the estimate surface depends on the choice ofρ, but the scale of the final map is rather
insensitive.
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Fitting of the Diggleet al. (1998) model requiresn × n matrix storage and inversion. Since the Upper
Cape Cod cancer data set involvesn = 3191 observations, some modification is required for practical
use. An attractive solution is to usereduced knot or low-rank kriging as proposed by Nychkaet al. (1998).
Let {κ1, . . . ,κKx} be a representative subset of{x1, . . . , xn} which we will refer to asknots. This subset
can be obtained via an efficient space filling algorithm (e.g. Johnsonet al., 1990; Nychka and Saltzman,
1998). Let

X = [1xi T]1�i�n, Z = [C0(‖xi − κk‖/ρ)]1�i�n,1�k�Kx

and
Ω = [C0(‖κk − κk′ ‖/ρ)]1�k,k′�Kx ,

whereC0(r) = (1 + |r |)e−|r |. Then low-rank kriging corresponds to fitting the logistic mixed model

logit{P(yi = 1|b)} = (Xβ + Zb)i , (2.6)

whereβ = (β0, β
T
1)T, E(b) = 0 and cov(b) = σ 2

x Ω−1. Typically, b is taken to have a Gaussian
distribution. The reparametrization

Z∗ = ZΩ−1/2, b∗ = Ω1/2b

means that cov(b∗) = σ 2
x I and standard mixed model software, such as theGLIMMIX macro inSAS, can

be used for fitting the model. The estimated log odds atx0 is then

L̂O(x0) = X(x0)β̂ + Z∗(x0)b̂∗ ,

where
X(x0) = [1xT

0]
and

Z∗(x0) = [C0(‖x0 − κk‖/ρ)]1�k�Kx Ω−1/2.

In the Upper Cape Cod cancer study there are data on smoking and age for which we would like to
control. Since the age effect is possibly non-linear we propose to model it as an arbitrary smooth function,
f . Assuming additivity in the logit scale, we arrive at

logit{P(yi = 1|b)} = (Xβ + Zb)i + βssi + f (ai ) ,

whereai is the age of personi andsi = 1 if personi was ever asmoker and zero otherwise.
The βssi term can be incorporated into theXβ component. There are a number of mixed model

representations of smoothing that can be used to subsume thef (ai ) into the generalized linear mixed
model as well (Brumback and Rice, 1998; Wang, 1998; Brumbacket al., 1999; Lin and Zhang, 1999,
Verbylaet al., 1999). For example, Kammann and Wand (2003) use linear splines to achieve this. An
alternative that we consider here is to simply apply the same principle for the geographic ‘smooth’ to the
age variable. Letκa

1 , . . . , κa
Ka

be a set of knots equally spaced with respect to the quantiles of theai and
set

Ωa = [C0(|κa
k − κa

k′ |/ρa)]1�k,k′�Ka

and
Za = [C0(|ai − κa

k |/ρa)]1�i�n,1�k�Ka ,

for someρa > 0. We useρa = max(ai ) − min(ai ).
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If we redefine

X = [1 si ai xT
i ]1�i�n (2.7)

and

Z = [ZaΩ
−1/2
a |Z∗] , (2.8)

then the model has the representation

logit{P(yi = 1|b)} = (Xβ + Zb)i , (2.9)

Cov(b) = diag(σ 2
a 1Ka , σ

2
x 1Kx) , (2.10)

where1n is the 1× n vector of ones.
A common convention in additive modelling is to centre the curve estimates about their means. The

components of the additive model can be interpreted as effects about the mean. The same convention
could be applied to the surface estimate in the kriging component of the geoadditive model. Operationally
we setC = [X|Z] and letC = [1|Cr ] be a partition ofC into the intercept column and the remainder. We
then work with

C̄ = [1|(I − 1
n 11T)Cr ] (2.11)

rather thanC. This convention is adopted in our analyses in Section 4. A consequence of this centering is
that a map of exp{Ŝ(x0)} over a mesh of x0 values plots the ratio of the odds for the event{y = 1} at x0
relative to the geometric mean odds over the mapped region.

2.1 Fitting as a generalized linear mixed model

In (2.9) and (2.10) we showed that the GAM has a logistic mixed model representation. Assuming that
the elements ofy = (y1, . . . , yn)T are conditionally independent givenb, the joint density ofy andb is
given by p(y, b; ψ) = p(y|b; β) p(b; θ), where

p(y|b; β) = exp{yT(Xβ + Zb) − 1TB(Xβ + Zb) + 1TC(y)} , (2.12)

B(Xβ + Zb) = [log[1 + exp{(Xβ + Zb)i }]]1�i�n , C(y) = 0, and, assumingb follows a Gaussian
distribution with mean zero,

p(b; θ) = (2π)−M/2 |Dθ|−1/2 exp(−1
2bTD−1

θ b) , (2.13)

whereM = Ka + Kx andDθ is given by (2.10). Letψ ≡ (βT, θT)T. We refer to p(y, b; ψ) as both the
complete-data density and complete-data likelihood.

Maximum likelihood inference for generalized linear mixed effects models is based on maximizing
the observed-data likelihood

L(ψ; y) =
∫

RM
p(y, b; ψ) db

= (2π)−M/2 |Dθ|−1/2 exp{1TC(y)}I (β, θ) , (2.14)

where

I (β, θ) =
∫

RM
exp{yT(Xβ + Zb) − 1TB(Xβ + Zb) − 1

2bTD−1
θ b} db. (2.15)
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In most cases, including the logistic mixed model used in (2.9) and (2.10), this integral is intractable.
Thus, we cannot find maximum likelihood estimates using the exact observed-data likelihood.

The GLIMMIX macro inSAS overcomes this with an algorithm commonly referred to as penalized
quasi-likelihood (PQL) that essentially replaces (2.15) by a Laplace approximation. Another approach
to finding maximum likelihood estimate ofψ is to use the EM algorithm (Dempsteret al., 1977). The
EM algorithm is a general purpose algorithm for finding the mode of a likelihood or posterior density
function. Viewing the random effects as latent variables, the EM algorithm iterates between calculating
the conditional expectation of the complete-data log likelihood,�(ψ; y, b) = log p(y, b; ψ), given the
observed data and maximizing this expected value as a function ofψ. Dempsteret al. (1977) have
shown that the EM algorithm will lead to the maximum likelihood estimates based on the observed-
data likelihood given in equation (2.14). In fact, since the observed-data likelihood is log-concave, the
EM algorithm will work quite well because it will not get stuck in local modes. In the context of the
generalized linear mixed effects model, the(m + 1)th iteration of the EM algorithm is

E-step: CalculateQ(ψ|ψ(m)) = E{�(ψ; y, b)|y, ψ(m)}, where the expectation is taken with respect to
p(b|y; ψ(m)).

M-Step: Setψ(m+1) = argmaxψ Q(ψ|ψ(m)).

The algorithm alternates between these two steps until there is a sufficiently small change in the parameter
values between iterations.

When working with generalized linear mixed effects models, the expectation step involves evaluating
the quantity

Q(ψ|ψ′) =
∫

�(ψ; y, b) p(b|y; ψ′) db

=
∫

�(ψ; y, b) p(y, b; ψ′) db∫
p(y, b; ψ′) db

, (2.16)

which is intractable for most models. To alleviate this problem, several authors have use a Monte Carlo EM
algorithm (Wei and Tanner, 1990) in which (2.16) is replaced by a Monte Carlo approximation based on a
sample fromp(b|y; ψ). McCulloch (1997) and Ibrahimet al. (2001) propose obtaining the Monte Carlo
sample using Markov chain methods, such as the Metropolis–Hastings algorithm or Gibbs sampling. Since
Markov chain sampling induces dependence, both Walker (1996) and Booth and Hobert (1999) suggest
alternative approaches to obtaining the Monte Carlo sample. The methods of Booth and Hobert (1999)
and Ibrahimet al. (2001) also provide algorithms for adaptively choosing the Monte Carlo sample size.

The Monte Carlo EM methodology is quite computationally intensive and more suited to smaller
numbers of random effects and sample sizes. Neither is the case for the geoadditive model for the Upper
Cape Cod data whereb may have dimension of 100 andn = 3191. The MCEM approach is simply not
practical and an asymptotic approximation seems necessary. Steele (1996) describes an EM algorithm that
alternates between calculatinĝDψ Q(ψ|ψ′

), a second-order Laplace approximation toDψ Q(ψ|ψ′
), and

solvingD̂ψ Q(ψ|ψ′
) = 0. Assuming that the order of differentiation and integration can be interchanged,

astandard assumption of the EM algorithm,

Dψ Q(ψ|ψ′
) =

∫
Dψ�(ψ; y, b) p(b|y; ψ

′
) db. (2.17)

Regularity conditions allow the fully exponential Laplace approximation (Tierneyet al., 1989) to the
expected complete-data score vector (2.17), but not the expected complete-data log-likelihood (Steele,
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1996). The Laplace approximation approximation toDψ Q(ψ|ψ′
) is given by

D̂ψ Q(ψ|ψ′
) = {Dψ�(ψ; y, b) + C(ψ; y, b)}∣∣b=b̂(ψ

′
)
, (2.18)

where
b̂(ψ) ≡ argmaxb p(y, b; ψ).

The termC(ψ; y, b) = {C(ψk; y, b)}1�k�p+S is an adjustment that allowŝDψ Q(ψ|ψ′
) to differ from

Dψ Q(ψ|ψ′
) by a O(n−2) term. The individual correction terms are given by

C(ψk; y, b) = 1
2tr

[
A−1

{
∂

∂ψk
A − ZTU diag

(
ZA−1

[
Db

{
∂

∂ψk
� (ψ; y, b)

}]T
)

Z
}]

, (2.19)

whereU = diag{B′′′(Xβ + Zb)} andA = −Hb�(ψ; y, b) = ZT diag{B′′(Xβ + Zb)} Z + D−1
θ .

Steele (1996) notes that a useful first-order approximation toDψ Q(ψ|ψ′) can be obtained by ignoring
the last term in (2.18). Using this simplified approximation, the estimating equations forβ in the Laplace
EM algorithm (Steele, 1996) and the PQL algorithm (Breslow and Clayton, 1993) are identical. That is,
both algorithms solveXT(y − µ̂) = 0, whereµ̂ = B′(Xβ + Zb̂). The two algorithms differ in the manner
in whichθ is estimated. However, when the estimates ofθ are similar, the Laplace EM algorithm should
yield more accurate estimates of the fixed effects since they are based on a second-order approximation
rather than a first-order approximation (Steele, 1996).

3. MAPPING CANCER RISK WITH INCOMPLETE COVARIATES

Missing covariate values are common in environmental and public health data. These values may be
missing by design (e.g. when some data are collected only on a subset of subjects) or, as is more commonly
the case, missing unintentionally. The standard approach is to perform a complete-case analysis, in which
cases with missing values are excluded from the analysis. This approach can lead to a substantial loss of
information if many variables exhibit missingness. Worse still, it can yield biased parameter estimates if
the missingness depends on the response variable (Jones, 1996). Likelihood-based methods, such as the
EM algorithm, use all of the available data, including those observations with missing covariate values.
They are particularly attractive because they provide valid inference when the missing values are missing-
at-random in the sense of Little and Rubin (1987) and can be extended to include situations when the data
are not missing-at-random. One interesting feature of the complete-case analysis is that estimates are not
biased when the missingness depends on the missing covariate values, a property that is not shared by
likelihood-based methods.

In the Upper Cape Cod cancer study, the geographic location and age variables are completely
observed for all subjects, but smoking status is missing for 29% of the subjects. Table 1 shows that the
missingness in smoking status depends on the cancer type, with smoking status missing for 41.0% of
prostate cancer patients and 24.2% of patients with other types of cancer. This is precisely the situation in
which complete case methods will lead to biased inference. So, an alternative method is needed.

We begin by considering a model withD discrete andS continuous covariates, whose values for
subjecti will be denoted bydi and ci , respectively. To simplify the notation, we assume that we are
smoothing each of theS continuous covariates. Suppose that the responsey and all continuous covariates
are completely observed, but that some of the values fordi may be missing-at-random for each subject.
For thei th subject, letdobs

i anddmiss
i denote the vectors of observed and missing values andni denote the

number of possible combinations of values fordmiss
i . For the appropriateX, Z, andb, wecan express the

complete-data density as

p(y, d, b|c; φ) = p(y|b, c, d; β) p(d|c; γ) p(b; θ) ,
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whereφ = (βT, γT, θT)T is a(p + q + S) × 1 vector of parameters. This likelihood differs from the one
in Section 2 because we need to modelp(d|c; γ), the conditional density of the missing covariates given
the observed covariates.

Since a joint model forp(d|c; γ) can be difficult to specify in general, we typically modelp(d|c; γ)

as the product of conditional densities in the same manner as Lipsitz and Ibrahim (1996). That is, we
express

p(d|c; γ) = p(d1|c; γ1) p(d2|d1, c; γ2) . . . p(dD|d1, . . . , dD−1, c; γD),

whereγ = (γT
1, . . . ,γT

D)T is theq×1 vector of parameters forp(d|c; γ). While this provides a simplified
model for p(d|c; γ), it does have some drawbacks. First, bias can be introduced in estimation ofγ.
Second, the order in which conditional densities are taken can influence the estimation ofψ; however,
it has been demonstrated that the estimates are quite robust to the order of the conditioning (Lipsitz and
Ibrahim, 1996; Ibrahimet al., 1999a,b, 2001).

Sincedmiss andb are not observed, we base our inference on the observed-data likelihood

L(φ; y, c, dobs) =
∫ ∑

dmiss

p(y, d, b|c; φ) db ,

where the summation is over all possible combinations of the missing discrete variables. The observed-
data likelihood in the missing covariate case is even more difficult to work with than that in the
complete-covariate case, but the complete-data likelihood remains relatively easy to manipulate. Thus,
data augmentation methods, such as the EM algorithm, are the most natural methods to use to obtain
estimates ofφ. In the following two sections, we outline our approach to estimation ofφ and Var(φ̂).

3.1 Estimation of φ

Treating bothdmiss andb as missing data, we can find the maximum likelihood estimate ofφ using the
EM algorithm (Dempsteret al., 1977). However, as in the complete-covariate case, the integral in the
E-step is intractable for most generalized linear mixed effects models. To remedy this, we propose using a
Laplace EM algorithm (Steele, 1996), handling the missing covariate values with the Method of Weights
(Ibrahim, 1990).

Let�(φ; y, c, d, b) = log p(y, d, b|c; φ), then the E-step at the(m+1)th iteration of the EM algorithm
calculates

DφQ(φ|φ(m)) = E{Dφ�(φ; y, c, d, b)|y, c, dobs, φ(m)}
=

∫ ∑
dmiss

Dφ�(φ; y, c, d, b) p(dmiss, b|y, c, dobs; φ(m)) db

=
∫

Dφ�w(φ; ỹ, c̃, d̃, b) p(b|y, c, dobs; φ(m)) db, (3.1)

where�w(φ; ỹ, c̃, d̃, b) = E{�(φ; y, c, d, b)|b, y, c, dobs, φ(m)} is a weighted complete-data log likeli-
hood that is calculable in closed form because the missing covariate values are discrete. Ibrahim (1990)
derived a similar expression in the context of the generalized linear model. The vectorsỹ, c̃,and d̃ are
augmented versions ofy, c, andd and are discussed in more detail below.

For the Upper Cape Cod study, there is one discrete covariate (di = si ) and three continuous covariates
(ci = (ai , xT

i )T). We modelp(y, b|ψ) with (2.12) and (2.13) and modelp(si |ci ; γ) as

logit{P(si |ci ; γ)} = (1 cT
i )γ.
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The weighted complete-data log likelihood is given by

�w(φ; ỹ, c̃, d̃, b) = ỹTW(X̃β + Z̃b) − 1TW B(X̃β + Z̃b) + s̃TWX̃−sγ

−1TW B(X̃−sγ) − 1
2bTD−1

θ b − 1
2 log |Dθ| , (3.2)

whereX̃−s is the matrixX̃ with the column for smoking status removed andb = (bT
a , bT

x )T is partitioned
to conform to the partitioning ofZ.

In general, thẽn × p matrix X̃ has rowsx̃T
i( j) = [1, d̃T

i( j), sT
i ], whereñ = ∑

i ni and d̃i( j) is the

vectordi with dmiss
i = dmiss

i( j) , the j th possible combination of values fordmiss
i . Thus,X̃ is constructed

by replacing thei th original row ofX by ni rows, with each new row containing one of theni possible
combinations for thedmiss

i values. The valuesdobs
i remain unchanged over theni observations. The matrix

W is a ñ × ñ diagonal matrix with elements

wi( j) =
{

Pr(dmiss
i = dmiss

i( j) |b, y, c, dobs; φ(m)) if observationi has missing values

1 otherwise
(3.3)

where

Pr(dmiss
i = dmiss

i( j) |b, y, c, dobs; φ(m)) = p(yi , d̃i( j), b|ci ; φ(m))∑ni
k=1 p(yi , d̃i(k), b|ci ; φ(m))

(3.4)

and the summation is over theni possible values ofdmiss
i . Equation (3.4) follows from a direct application

of Bayes’ Theorem. Since they contain completely observed data, theñ × M matrix Z̃ andñ × 1 vectorỹ
are created by replacing thei th row of Z andy with ni copies ofzT

i andyi , respectively.
Since (3.1) cannot be calculated in closed form, we follow Steele (1996) and use an approximation

based on a fully exponential Laplace approximation (Tierneyet al., 1989). The approximation yields

D̂φQ(φ|φ(m)) =
{
Dφ�w(φ; ỹ, c̃, d̃, b) + C(φ; ỹ, c̃, d̃, b)

}∣∣∣
b=b̂(φ(m))

, (3.5)

where
b̂(φ) ≡ argmaxb p(y, c, dobs, b; φ).

The correction termC(φ; ỹ, c̃, d̃, b) is similar to (2.19) with appropriate changes. For example,A is
replaced byAw = −Hb�w(φ; ỹ, c̃, d̃, b). In calculating the correction terms, we replace the EM weights,
wi( j) with a first-order Taylor series expansion aboutb̂(φ(m)). A detailed derivation of (3.5) and, in
particular,C(φ; ỹ, c̃, d̃, b) is given in an appendix found on Biostatistics Online.

It is well-known that the EM algorithm does not automatically provide a method for estimating
Var(φ̂). Because it relies on the same code used to run the EM algorithm and has been shown to be
at least as accurate as the SEM method (Meng and Rubin, 1991), we use the forward-difference method
of Jamshidian and Jennrich (2000).

3.2 Prediction of b

To estimate the surfaceS(x), weneed to predict the random effectsb. It is common to predictb with b∗ =
E(b|y, c, dobs, φ̂), the conditional expectation ofb given the observed data evaluated at the maximum
likelihood estimate forφ. Since, for the generalized linear mixed effects model, this expectation typically
cannot be calculated in closed form, we approximate it with a Laplace approximation. The spirit of the
approximation is similar to that used to approximate the E-step of the EM algorithm described in Section
3.1. Details are provided in an appendix found on Biostatistics Online.
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4. ANALY SIS OF THE UPPER CAPE COD CANCER DATA

In this section we return to the Upper Cape Cod prostate cancer data collected by the MDPH between
1987 and 1994. The response variable is the presence or absence of prostate cancer (yi = 1 andyi = 0,
respectively) amongn = 3191 male cancer patients living on the upper portion of Cape Cod. In addition to
location of residence, covariate data was collected on age and smoking status. Age is categorized into age
decade (1, 2, . . . , 10), and a subject’s smoking status is recorded as either ‘ever smoker’ (si = 1) or ‘never
smoker’ (si = 0). A plot of the geo-coded location data is shown in Figure 1. Prostate cancer cases are
plotted using solid dots, and other cancer cases are plotted using empty dots. To preserve confidentiality
the points have been jittered. A summary of the other variables is presented in Table 1. While age and
location are completely observed, smoking status was not obtained for approximately 29% of the subjects.

The primary goal of this analysis is to assess the geographic distribution of prostate cancer risk
among the population of Upper Cape Cod, adjusting for the effects of smoking and age. To estimate
this risk surface, we need a comparison group of control subjects. This group should be a sample from
the population of people living on Upper Cape Cod and at risk for being diagnosed with prostate cancer
between 1987 and 1994. Since a random sample from this population is not available, we use as control
subjects the male patients diagnosed with other cancers during the same time period. In using this set of
controls, we must assume that the risk of other cancers is not associated with the location of the patient’s
residence.

The issues surrounding relative cancer mapping, and proportional incidence studies in general, are
important ones. Breslow and Day (1987, p. 45) note that proportional incidence studies can be useful in
the initial stages of an investigation. However, using other cancer types as controls can be problematic.
In particular, interpretation of the results can be difficult since an increased proportional risk can be the
result of either an increased absolute risk of prostate cancer or a decreased absolute risk for other types
of cancer. However, if we are comfortable with the assumption that incidence of other types of cancer is
not related to geography, then the data can be viewed as if they arose from a case-control study in which
the other cancer cases are assumed to represent an unbiased sample of the population at risk (Breslow and
Day, 1987, p. 115).

In general, we should exclude from any analysis those cancer types that are known to be related
to geography (Breslow and Day, 1987, p. 115) and those cancers that are similar in etiology to the
cancer under study. For example, Best and Wakefield (1999) exclude cancers of the uterus and ovary in a
proportional incidence model for breast cancer. In our analysis of the Cape Cod data, we have included all
other cancer types in the control group. No cancer types were excluded because we had no evidence that
other cancers are clearly associated with geography and no other cancers that were recorded in the cancer
registry had an etiology similar to that of prostate cancer.

Wemodel these data with the following additive logistic regression model

logit{P(yi = 1)} = β0 + βssi + f (ai ) + S(xi ) (4.1)

wherexi = (longitudei , latitudei ), f is a smooth univariate function of age andS is a smooth bivariate
function of longitude and latitude. We estimate (4.1) using the logistic mixed model defined by (2.7)–
(2.10). Kelsall and Diggle (1998) and Diggleet al. (1998) have fit similar models to case-control data.

For the age variable, we useKa = 7 knots placed at the each of the interior points of the
range of age,{2, 3, 4, 5, 6, 7, 8}. For the geographical data, we useKx = 33 knots chosen using a
space-filling algorithm from theS-PLUS moduleFUNFITS for fitting thin plate splines. The random
effects, b = (bT

a , bT
x )T, are assumed to follow a Gaussian distribution,b ∼ N (0, Dθ), where

Dθ = diag(σ 2
a 1Ka , σ

2
x 1Kx). To improve the likelihood surface, we reparameterize the model using

θ = (θa, θx)
T = (logσ 2

a , logσ 2
x )T. To fit this model using the algorithm presented in Section 3, we need

to additionally specify a model for the conditional probability of being a smoker given the completely
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Table 2.Complete-case and Method of Weights analyses
of the Upper Cape Cod cancer data

Method of Weights Complete case
Parameter Estimate (s.e.) Estimate (s.e.)
Intercept −0.35 (0.118) −0.61 (0.120)
smoke −0.90 (0.122) −0.89 (0.106)
θage 5.20 5.01 (0.463)

θgeog 3.77 3.57 (0.367)

observed covariates, age and residence. We model smoking status using the following logistic regression
model:

logit{P(si = 1)|ai , xi } = γ0 + γ1ai + γ2longitudei + γ3latitudei .

To run the complete-case analysis, we fit model (4.1), excluding the 940 subjects with missing
smoking data. The resulting generalized linear mixed model was estimated using theGLIMMIX macro
in SAS. To run the Method of Weights analysis, we fit model (4.1) using the observed data from all 3191
subjects. The model was estimated using programs written inC and run on a Sun workstation.

The upper-right panel of Figure 1 plots the estimated odds ratio surfaces for geography from the
complete-case analysis. The odds ratio for the geographic component is plotted relative to the geometric
mean odds. There appears to be an area of increased risk to the southeast of the MMR, between the towns
of Falmouth and Hyannis. The lower-left panel of Figure 1 is the corresponding plot based on estimates
from the Method of Weights analysis. The estimated geographic component is strikingly different. In
particular, the area of elevated risk has extended to the north, but the maximum risk has decreased. While
similar regions are elevated in both analyses, this shift may be important from the perspective of an
hypothesis-generating analysis.

To assess the sensitivity of the results to the choice ofρ, we separately fit models using values of
ρ ranging fromρ̂ = max1�i, j�n ‖xi − x j‖ to ρ̂ = 1

20 max1�i, j�n ‖xi − x j‖. The smoothness of the
estimated surfaces did depend on the choice ofρ, with larger values ofρ̂ yielding smoother surfaces.
However, the scale of the maps was virtually the same for all choices ofρ̂.

The lower-right panel of Figure 1 plots the estimated odds ratio for age relative to the mean age
in the cohort, approximately 77 years. The solid line corresponds to the Method of Weights estimate,
while the dashed line corresponds to the complete-case EM estimate. The primary difference between the
two estimates occurs in the older age groups. The complete-case estimate shows a risk that continues to
increase after but the rate slows after age 75. The Method of Weights estimate shows that the risk begins to
decrease risk around an age of 80 years. Table 2 shows the parameter estimates for smoking from both the
complete-case EM algorithm and the Method of Weights algorithm. We see that prostate cancer patients
are less likely to be smokers than patients with other cancers. This is likely driven by the relatively large
number of lung cancer patients in the control group.

We note that this analysis provides only a first attempt at examining these data. Due to the long
latency period of most cancers and the difficulties in interpreting results of proportional incidence studies,
this analysis cannot provide conclusive evidence of an association between location of residence and
onset of prostate cancer. However, we believe that it can be used to generate further hypotheses about
potential environmental effects. We also note that we chose to fit models for prostate cancer risk after
seeing elevated rates in the MDPH report (Massachusetts Department of Public Health, 1997). While
formal hypothesis testing may be compromised as a result, estimation of the risk surface still provides a
more refined estimate of risk than do methods based on town- or census tract-level prostate cancer rates.
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5. DISCUSSION

In this paper we have presented a method for fitting covariate-adjusted cancer incidence maps in the
presence of missing covariate data. By fitting these maps using a generalized linear mixed effects model,
we are able to use the EM algorithm to obtain estimates of both the fixed effects and variance components
which control the amount of smoothing. Thus, we have a method that can both handle missing data and
provide an automatic method for choosing the ‘optimal’ amount of smoothing.

Important similarities and differences exist between the method presented here and the complete-
case alternative. Both approaches treat the additive model (2.2) as a mixed effects model. While either
standard software (e.g. PQL via theGLIMMIX macro inSAS) or custom software (e.g. the EM algorithm
via C or FORTRAN programs) can be used to fit the model to the complete-cases, custom programs
must be written to use the Method of Weights algorithm described here. The potential benefits of using
our approach lie in the validity of the estimates. The complete-case analysis can yield biased estimates
if the missingness mechanism depends on the response variable (Jones, 1996). The Method of Weights
approach, however, will yield unbiased estimates in this situation. Conversely, the complete-case analysis
can provide unbiased estimates when the missingness mechanism depends on the missing covariate values;
aproperty that is not shared by our method.

Several additional points are worth discussing. The first regards the Laplace approximation to the
intractable integral in the E-step of the EM algorithm. The dimension of the integral is the same as the total
number of knots for estimating the smooth curves. Thus, this integral may be of quite high dimension,
even when using a reduced set of knots as we do. The question arises, then, as to the validity of the
approximation. Clearly, in such cases we need to have a sufficiently large sample size in order for the
approximation to be valid. However, this is exactly the situation in which Monte Carlo methods are tedious
to implement and when we would advocate using this method. Though not implemented here, it would
be worthwhile to assess how the methodology works as the number of knots are varied. Increasing the
number of knots may allow for a smoother estimated curve or surface, but may also yield a poorer Laplace
approximation. An alternative approach is that taken in French (2000) where a Monte Carlo EM algorithm
(Wei and Tanner, 1990) is implemented. While such an approach may be able to provide a more accurate
approximation, sampling from the distribution of the random effects given the observed data can be slow
even when the data set is relatively small. One benefit of the method proposed here is that we can easily
handle large data sets such as the Cape Cod cancer data.

A second point concerns estimation of standard errors for the fitted curves and surfaces. While we use
the FDM method (Jamshidian and Jennrich, 2000) to obtain estimated standard errors for the fixed effects,
we do not provide an estimate of the standard error forf̂ (a) and Ŝ(x). We are currently studying the use
of bootstrap and MCMC methods for standard error estimation.

Finally, we would like to obtain a method for testing the hypothesis that the surface is planar. Since a
planar surface corresponds toσ 2 = 0, such a test can be obtained by testingH0 : σ 2 = 0. Crainiceanu
et al. (2004) use this type of approach in the linear model. Application of these methods to generalized
linear mixed effects models is a subject of current research.
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